
ZFS Fast Dedup

Allan Jude

Co-Founder

Klara Inc.

Ontario, Canada

allan@klarasystems.com

Abstract—The deduplication feature was added to ZFS

version 21 and later incorporated into FreeBSD in early 2011

then first released as part of FreeBSD 8.3. In the more than a

decade since then, users have been advised to avoid the feature

due to very poor performance. We present a series of

enhancements to ZFS deduplication to improve performance

and make the feature useful for general purpose storage and for

high density VM hosting.

Keywords—ZFS, deduplication, dedup, filesystem, storage,

FreeBSD, performance

I. INTRODUCTION

Demand for data storage continues to grow at a more and
more rapid pace. While cost per TB stored continues to
decrease, any technology that can further reduce the amount
of storage consumed by the various workloads on a system has
a wide and eager audience. ZFS features transparent
compression which can offer savings on certain types of data,
and deduplication which promises to avoid storing the same
data multiple times, possibly resulting in massive savings.
However, the promise of the dedup feature is diminished by
the performance tradeoff, which can be quite extreme, as the
size of the deduplication table grows, write performance
continues to decrease until the storage is nearly unusably slow.

II. WHAT MAKES LEGACY DEDUP SLOW

In order to implement deduplication, ZFS must keep track
of the strong cryptographic hash of every block that has been
stored. When a new block is written, its hash is calculated as
part of the normal ZFS write process, but before the block is
stored to disk, the list of all existing blocks is consulted to see
if an identical block is already on disk. If it is, rather than
storing the new block on disk, its metadata instead references
the existing block, and the entry in the list of blocks is
annotated with an additional “reference” to that data. When a
block is deleted, the list of blocks must be consulted, and one
of these references is removed, only once the number of
references reaches zero can the disk space be reclaimed.

Enabling deduplication has a number of effects on how
ZFS stores data. The first of which is changing the checksum
algorithm from the default fast fletcher4 checksum, which is
not judged to be collision resistant enough, to sha256. This
increases CPU usage but is generally not a large contributor to
the loss of performance unless the number of available CPUs
is low. The biggest impact comes from the fact that in order to
write new data to disk, ZFS now needs to consult the list of
hashes of existing blocks to determine if the new block
actually needs to be written or can reference an existing copy.
The list of hashes is stored sorted by the hash, to allow faster
lookups.

To implement the list of hashes of existing blocks, ZFS
stores two DDTs (deduplication tables) on disk. These are
large key-value databases called ZAPs (ZFS Attribute
Processor), which are sorted by the key and allow for

relatively fast lookups. Each entry’s key consists of the
checksum of the physical data, its logical size, physical size
(after compression), compression algorithm, and some other
properties. The value is an array of four entries describing
where the data is stored on disk, how many unique blocks
reference it, and the time when it was first written. ZFS keeps
one DDT for all blocks that are unique (have never
deduplicated), and one for blocks that are duplicated.

When new data is written, ZFS will prepare the data to be
written to disk as usual, including compressing it, and
calculating a checksum. Before allocating space on disk, ZFS
will lookup the calculated checksum in the DDTs to see if a
copy has already been written to disk. If a copy does exist, the
existing entry is updated to increment its reference count, and
the entry may need to move from the “UNIQUE” ZAP to the
“DUPLICATE” ZAP. If the checksum is not found in the
DDT, then it is inserted into the “UNIQUE” ZAP.

Due to the nature of strong checksum algorithms (SHA256
is used by default for deduplication), when a number of blocks
are written sequentially, each will have a hash that does not
resemble the others. Since the ZAP is stored in sorted by the
key to improve search speed, this means the lookups of these
new pending writes must access very different sections of the
DDT. This means every new write results in 1 to 4 random
reads from the DDT (to load any indirect blocks to find the
location of the desired entry within the ZAP) to determine if
the data already exists.

Once the deduplication status of the newly written blocks
has been determined, if the data is unique, it must be written
to disk, and then, whether it is unique or not, the DDT must be
updated to either insert the new entry or increment the
reference count of the existing entry. This results in a further
1 – 4 writes to disk to update the ZAP and its indirect blocks.
The DDT is a critical data structure in ZFS, so all of its blocks
are stored with copies=3, increasing the inflation further.

In a pathological case, a database application writing 100
operations per second, could result in as many as 400 read
IOPS and 1300 write IOPS, a whopping 1700% workload
inflation.

III. FAST DEDUP

We introduce a different way to handle updates to the DDT
ZAPs, to reduce this inflation. Rather than updating the DDT
at the end of each transaction group, we instead create an in-
memory AVL tree and corresponding append-only on-disk
Fast Dedup Table log (FDT-Log). When a new or updated
DDT entry is created, rather than writing the change directly
to the ZAP, the updated entry is inserted or updated in the
AVL tree and appended to the on-disk log. When the AVL
tree reaches half of the configured maximum memory usage,
it switches to the flushing state, and a new empty AVL tree is
created in its place. The AVL trees in ZFS have been modified
to be sorted in the same order as the DDT ZAP, as previously
they were sorted by the checksum but in 16 bit chunks

resulting in different ordering. With the AVL tree sort
matching the on-disk DDT sort, ZFS is able to write out larger
batches of changes with better aggregation and amortizes the
cost of the updates to the indirect blocks. This batching
reduces the total amount of metadata that needs to be written.
Over the next few transaction groups (rate controlled to avoid
overloading the system), all of the pending changes in the
AVL tree are written to the DDT ZAPs, and then the flushing
AVL tree is freed.

The on-disk FDT-Log works much the same way, except
due to its append-only nature, the log is not sorted. When the
in-memory AVL tree is full, a new log corresponding to the
new empty AVL tree is created, and any future changes are
written to that log instead. As the full AVL tree is flushed to
the DDT, each transaction group the bonus buffer of the old
FDT-Log is updated to reflect the checkpoint, the last hash
that was successfully updated in the DDT. When the old AVL
tree is empty, the old log is freed.

In the event the system is shutdown or crashes, the in-
memory AVL tree can be recreated from the on-disk log,
replaying the log entries sequentially to perform the inserts
and updates to the AVL tree, and then using the checkpoint in
the bonus buffer to resume flushing the AVL tree to the DDT
where it previously left off, preventing old updates from being
repeated.

IV. FURTHER REDUCING INFLATION

One of the biggest contributors to the inflation caused by
deduplication is the fact that the DDTs are stored in triplicate
because they were deemed critical to the operation of the pool.
When a block is deleted, if its block pointer’s deduplication
bit it set, ZFS updates the DDT to reduce its reference count,
and if it is the last reference, allows the space to be reclaimed.
Before fast dedup, ZFS would panic if a block with the dedup
bit set could not be found in the DDTs.

After discussing the issue at length with the ZFS
Leadership Team, we concluded it is safe to reduce the DDTs
to copies=1 and apply the same policy as normal data for the
indirect blocks, that is, keeping additional copies only of the
higher level indirect blocks that impact a large number of
blocks. It is assumed that those operating deduplication will
provide redundancy at the pool level with mirrors or RAID-Z
rather than relying on the best-effort copies mechanism.

Additionally, the invariant that any block with the dedup
bit set must be able to be looked up in the DDT was removed
as part of the FDT Pruning work described below. If a block
has the dedup bit set, but is NOT present in the DDT, it is
assumed that it was a unique block with only a single
reference, and so is safe to reclaim.

Additionally, we have added logic to handle the possible
corruption of the DDT as elegantly as is possible. If a hash
cannot be looked up in the DDT due to a read failure, the space
is never freed to avoid destroying the data that may be in use
by other referents. This would effectively “leak” the space,
meaning it can never be freed, but the damage would be
limited to the single DDT block, which could at most impact
fewer than 500 blocks.

V. OTHER ENHANCEMENTS

In order to make dedup useful, Klara created a number of
additional features that give the operator more control over the
performance tradeoffs of deduplication.

A. Dedup preload

The cost of the random reads to determine if a block has
already been written can be very high. Keeping the DDT
cached in ZFS’s Adaptive Replacement Cache (ARC) can
almost entirely mitigate this cost. However, after a reboot the
cache will be cold, and performance will suffer.

One production customer of ZFS had a DDT of over 100
GiB, which meant after a reboot the system performed poorly
for at least 72 hours, until most of the DDT have been pulled
into the cache by the random reads generated while writing
newer data.

The new dedup preload feature allows the operator to
explicitly warms the cache by sequentially prefetching the
entire DDT. Optionally, if the ARC is not large enough to
support the entire DDT, this feature can prefetch only the
indirect blocks, to keep the read inflation to a maximum of
100% (instead of 400%).

With these changes, system performance can be restored
after a reboot in minutes instead of days.

B. ZAP Shrinking

The ZFS Attribute Processor (ZAP), the key-value pair
system used internally by ZFS, does not support shrinking. If
a directory, DDT, properties list, or any ZAP in ZFS grows to
a large size, and then the number of entries is reduced, the
corresponding size of the ZAP does not diminish. The ZAP
will be sparse, and compression may reduce its size, but the
number of blocks will remain at the high water mark, creating
longer search and update times.

In order to implement the additional features described
below, Klara implemented an enhanced version of ZAP
shrinking to be able to reclaim space in the ZAP.

As a side effect of this work, Klara completed the in-
progress work on ZAP shrinking that will improve the
performance of formerly large directories and other ZAPs that
have shrunk.

C. Dedup Quota

In order to limit the size of the DDT to ensure it fits in
memory, or within a vdev of fast devices (NVMe), Klara
added new functionality to allow the administrator to
configure the maximum size of the DDT, so that it does not
exceed the target size. If this maximum is reached, no new
unique blocks are added to the DDT. Any data that is duplicate
of existing data is still able to deduplicate.

When the legacy DDT was able to fit in RAM, or at least
on fast media, performance could be acceptable for some
workloads, but the moment the DDT exceeded that size, and
some writes requires reading data from slow spinning media,
the performance of the entire system was crippled. Giving the
administrator the required controls to prevent performance
dropping off a cliff as the DDT grows makes deduplication
infinitely more useful.

Deduplication could also cause serious problems if the size
of the DDT exceeded available memory during pool import
and recovery. If a rewind or other operation requires writing
to the pool, and the DDT was constantly being pages in and
out due to being too large the system could take excessive
amounts of time to bring the pool online, sometimes on the
order of weeks due to the extremely poor performance caused
by the workload being predominantly random reads. While

performance is greatly improved by FDT, the quota feature
helps ensure the system does not exceed its own capacity.

D. FDT Pruning

In order to have the dedup quota feature be more useful,
Klara also implemented FDT pruning. When the DDT is
nearing its quota, ZFS will remove some of the oldest entries
from the unique DDT. It is assumed that the oldest entries
have the least chance of deduplicating, as they have been
around the longest and have yet to find a match. Removing
these older entries in favour of newly written data that may
have a higher chance of deduplicating against yet newer data
is judged to be more desirable.

This ensures that the deduplication functionality can
continue to operate, and that the data most likely to benefit
from deduplication being resident in the “unique” DDT.

VI. PERFORMANCE

 Legacy deduplication suffers from extremely poor
performance, which gets worse as the size of the DDT
increases. In the field, we have seen customers with DDTs
containing 400 million blocks. Even with NVMe based
storage, these pools perform extremely poorly for writes, due
to the demand reads required for each write. The customer
persists using dedup in spite of this, because they are storing
50 TiB of data (compressed to 37 TiB) using only 7.7 TiB of
storage space with the savings from deduplication, even
though 240 million of the 400 million blocks are unique.

 In the following benchmarks, we write data to a pool with
8 KiB records (to create a larger number of DDT entries), in
batches of 64 GiB while measuring write throughout. After
each batch, we drain the FDT-Log and then measure the total
amount of data written to the dedicated dedup vdev, to
measure the inflation factor. Batches are repeated to measure
the change in throughput and inflation as the size of the DDT
grows.

TABLE I. REDUCED AMPLIFICATION

Write Amplification

Configuration
Total

Inflation

Incremental

Inflation

Legacy 311% 479%

FDT copies=3 maxmem=320M 15% 19%

FDT copies=1 maxmem=320M 8% 10%

FDT copies=1 maxmem=1.6G 7% 9%

FDT reduces inflation by 5x – 30x

 The most important improvement from FDT is the

ability to sustain much higher write throughputs than with

legacy dedup. As our results show, performance is

maintained at a level much closer to a system without

deduplication and does not suffer the same linear decline as

the size of the DDT grows.

TABLE II. INCREASED PERFORMANCE

Write Performance

Configuration MiB/s % of Baseline

Legacy 44 100%

FDT copies=3 357 811%

FDT copies=1 362 822%

FDT copies=1 bs=32k 361 820%

No Dedup 647 1470%

FDT increases performance over legacy dedup by 800%

In these tests, all writes were unique blocks. With some

portion of writes being obviated by deduplication, real-world

throughput of FDT would be much closer to the speeds

observed without deduplication.

0

100

200

300

400

64 128 192 256 320 384 448 512 576 640

D
ed

u
p

 v
d

ev
 B

yt
es

 W
ri

tt
en

GB Written

DDT vs FDT @ Recordsize=8KB: Write Inflation

 8k-Legacy,copies=3 8k-Legacy,copies=1
 8k-FDT,copies=3 8k-FDT,copies=1
 8k-FDT,mem=1600

0

2

4

6

8

10

12

14

64 128 192 256 320 384 448 512 576 640

D
ed

u
p

 v
d

ev
 B

yt
es

 W
ri

tt
en

GB Written

FDT @ Recordsize=8KB: Write Inflation

 8k-FDT,copies=3 8k-FDT,copies=1

 8k-FDT,mem=1600

0

100

200

300

400

500

600

700

800

32 64 96 128 160 192 224 256 288 320

M
B

/s
ec

GB Written

FDT @ Recordsize=8KB: Performance

 8k-Legacy Dedup=off 8k-FDT,copies=1

VII. CONCLUSIONS

 With the changes we have created, ZFS deduplication
becomes a viable option for use in production without the
extreme performance tradeoffs requires in the past. With new
lower latency storage media, dedicated dedup vdevs, and the
new suite of options and tunables, dedup becomes generally
useful for a wide range of workloads. Fast Dedup improves
performance of a previously pathological workload by over
800%

ACKNOWLEDGMENT

The author would like to express his thanks to the entire
team at Klara Inc. who helped create and implement this new
design and make it successful, especially: Rob Norris, Don
Brady, Alex Stetsenko, Mateusz Piotrowski, and Fred Weigel.

The author would also like to express gratitude to the
entire OpenZFS community who have been a pleasure to
cooperate with and have been accepting of Klara’s role as a
steward of OpenZFS. Special thanks to those who helped
refine the design of fast dedup: Matt Ahrens, Pawel Dawidek,
Alexander Motin, and Rich Ercolani.

 Lastly, this project would not have been possible without
the financial support of iXsystems and the other sponsors of
the Fast Dedup project.

