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Abstract—The deduplication feature was added to ZFS 

version 21 and later incorporated into FreeBSD in early 2011 

then first released as part of FreeBSD 8.3. In the more than a 

decade since then, users have been advised to avoid the feature 

due to very poor performance. We present a series of 

enhancements to ZFS deduplication to improve performance 

and make the feature useful for general purpose storage and for 

high density VM hosting. 
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I. INTRODUCTION 

Demand for data storage continues to grow at a more and 
more rapid pace. While cost per TB stored continues to 
decrease, any technology that can further reduce the amount 
of storage consumed by the various workloads on a system has 
a wide and eager audience. ZFS features transparent 
compression which can offer savings on certain types of data, 
and deduplication which promises to avoid storing the same 
data multiple times, possibly resulting in massive savings. 
However, the promise of the dedup feature is diminished by 
the performance tradeoff, which can be quite extreme, as the 
size of the deduplication table grows, write performance 
continues to decrease until the storage is nearly unusably slow. 

II. WHAT MAKES LEGACY DEDUP SLOW 

In order to implement deduplication, ZFS must keep track 
of the strong cryptographic hash of every block that has been 
stored. When a new block is written, its hash is calculated as 
part of the normal ZFS write process, but before the block is 
stored to disk, the list of all existing blocks is consulted to see 
if an identical block is already on disk. If it is, rather than 
storing the new block on disk, its metadata instead references 
the existing block, and the entry in the list of blocks is 
annotated with an additional “reference” to that data. When a 
block is deleted, the list of blocks must be consulted, and one 
of these references is removed, only once the number of 
references reaches zero can the disk space be reclaimed. 

Enabling deduplication has a number of effects on how 
ZFS stores data. The first of which is changing the checksum 
algorithm from the default fast fletcher4 checksum, which is 
not judged to be collision resistant enough, to sha256. This 
increases CPU usage but is generally not a large contributor to 
the loss of performance unless the number of available CPUs 
is low. The biggest impact comes from the fact that in order to 
write new data to disk, ZFS now needs to consult the list of 
hashes of existing blocks to determine if the new block 
actually needs to be written or can reference an existing copy. 
The list of hashes is stored sorted by the hash, to allow faster 
lookups.  

To implement the list of hashes of existing blocks, ZFS 
stores two DDTs (deduplication tables) on disk. These are 
large key-value databases called ZAPs (ZFS Attribute 
Processor), which are sorted by the key and allow for 

relatively fast lookups. Each entry’s key consists of the 
checksum of the physical data, its logical size, physical size 
(after compression), compression algorithm, and some other 
properties. The value is an array of four entries describing 
where the data is stored on disk, how many unique blocks 
reference it, and the time when it was first written. ZFS keeps 
one DDT for all blocks that are unique (have never 
deduplicated), and one for blocks that are duplicated. 

When new data is written, ZFS will prepare the data to be 
written to disk as usual, including compressing it, and 
calculating a checksum. Before allocating space on disk, ZFS 
will lookup the calculated checksum in the DDTs to see if a 
copy has already been written to disk. If a copy does exist, the 
existing entry is updated to increment its reference count, and 
the entry may need to move from the “UNIQUE” ZAP to the 
“DUPLICATE” ZAP. If the checksum is not found in the 
DDT, then it is inserted into the “UNIQUE” ZAP. 

Due to the nature of strong checksum algorithms (SHA256 
is used by default for deduplication), when a number of blocks 
are written sequentially, each will have a hash that does not 
resemble the others. Since the ZAP is stored in sorted by the 
key to improve search speed, this means the lookups of these 
new pending writes must access very different sections of the 
DDT. This means every new write results in 1 to 4 random 
reads from the DDT (to load any indirect blocks to find the 
location of the desired entry within the ZAP) to determine if 
the data already exists. 

Once the deduplication status of the newly written blocks 
has been determined, if the data is unique, it must be written 
to disk, and then, whether it is unique or not, the DDT must be 
updated to either insert the new entry or increment the 
reference count of the existing entry. This results in a further 
1 – 4 writes to disk to update the ZAP and its indirect blocks. 
The DDT is a critical data structure in ZFS, so all of its blocks 
are stored with copies=3, increasing the inflation further. 

In a pathological case, a database application writing 100 
operations per second, could result in as many as 400 read 
IOPS and 1300 write IOPS, a whopping 1700% workload 
inflation. 

III. FAST DEDUP 

We introduce a different way to handle updates to the DDT 
ZAPs, to reduce this inflation. Rather than updating the DDT 
at the end of each transaction group, we instead create an in-
memory AVL tree and corresponding append-only on-disk 
Fast Dedup Table log (FDT-Log). When a new or updated 
DDT entry is created, rather than writing the change directly 
to the ZAP, the updated entry is inserted or updated in the 
AVL tree and appended to the on-disk log. When the AVL 
tree reaches half of the configured maximum memory usage, 
it switches to the flushing state, and a new empty AVL tree is 
created in its place. The AVL trees in ZFS have been modified 
to be sorted in the same order as the DDT ZAP, as previously 
they were sorted by the checksum but in 16 bit chunks 



resulting in different ordering. With the AVL tree sort 
matching the on-disk DDT sort, ZFS is able to write out larger 
batches of changes with better aggregation and amortizes the 
cost of the updates to the indirect blocks. This batching 
reduces the total amount of metadata that needs to be written. 
Over the next few transaction groups (rate controlled to avoid 
overloading the system), all of the pending changes in the 
AVL tree are written to the DDT ZAPs, and then the flushing 
AVL tree is freed. 

The on-disk FDT-Log works much the same way, except 
due to its append-only nature, the log is not sorted. When the 
in-memory AVL tree is full, a new log corresponding to the 
new empty AVL tree is created, and any future changes are 
written to that log instead. As the full AVL tree is flushed to 
the DDT, each transaction group the bonus buffer of the old 
FDT-Log is updated to reflect the checkpoint, the last hash 
that was successfully updated in the DDT. When the old AVL 
tree is empty, the old log is freed. 

In the event the system is shutdown or crashes, the in-
memory AVL tree can be recreated from the on-disk log, 
replaying the log entries sequentially to perform the inserts 
and updates to the AVL tree, and then using the checkpoint in 
the bonus buffer to resume flushing the AVL tree to the DDT 
where it previously left off, preventing old updates from being 
repeated. 

IV. FURTHER REDUCING INFLATION 

One of the biggest contributors to the inflation caused by 
deduplication is the fact that the DDTs are stored in triplicate 
because they were deemed critical to the operation of the pool. 
When a block is deleted, if its block pointer’s deduplication 
bit it set, ZFS updates the DDT to reduce its reference count, 
and if it is the last reference, allows the space to be reclaimed. 
Before fast dedup, ZFS would panic if a block with the dedup 
bit set could not be found in the DDTs. 

After discussing the issue at length with the ZFS 
Leadership Team, we concluded it is safe to reduce the DDTs 
to copies=1 and apply the same policy as normal data for the 
indirect blocks, that is, keeping additional copies only of the 
higher level indirect blocks that impact a large number of 
blocks. It is assumed that those operating deduplication will 
provide redundancy at the pool level with mirrors or RAID-Z 
rather than relying on the best-effort copies mechanism. 

Additionally, the invariant that any block with the dedup 
bit set must be able to be looked up in the DDT was removed 
as part of the FDT Pruning work described below. If a block 
has the dedup bit set, but is NOT present in the DDT, it is 
assumed that it was a unique block with only a single 
reference, and so is safe to reclaim. 

Additionally, we have added logic to handle the possible 
corruption of the DDT as elegantly as is possible. If a hash 
cannot be looked up in the DDT due to a read failure, the space 
is never freed to avoid destroying the data that may be in use 
by other referents. This would effectively “leak” the space, 
meaning it can never be freed, but the damage would be 
limited to the single DDT block, which could at most impact 
fewer than 500 blocks. 

V. OTHER ENHANCEMENTS 

In order to make dedup useful, Klara created a number of 
additional features that give the operator more control over the 
performance tradeoffs of deduplication. 

A. Dedup preload 

The cost of the random reads to determine if a block has 
already been written can be very high. Keeping the DDT 
cached in ZFS’s Adaptive Replacement Cache (ARC) can 
almost entirely mitigate this cost. However, after a reboot the 
cache will be cold, and performance will suffer. 

One production customer of ZFS had a DDT of over 100 
GiB, which meant after a reboot the system performed poorly 
for at least 72 hours, until most of the DDT have been pulled 
into the cache by the random reads generated while writing 
newer data. 

The new dedup preload feature allows the operator to 
explicitly warms the cache by sequentially prefetching the 
entire DDT. Optionally, if the ARC is not large enough to 
support the entire DDT, this feature can prefetch only the 
indirect blocks, to keep the read inflation to a maximum of 
100% (instead of 400%). 

With these changes, system performance can be restored 
after a reboot in minutes instead of days. 

B. ZAP Shrinking 

The ZFS Attribute Processor (ZAP), the key-value pair 
system used internally by ZFS, does not support shrinking. If 
a directory, DDT, properties list, or any ZAP in ZFS grows to 
a large size, and then the number of entries is reduced, the 
corresponding size of the ZAP does not diminish. The ZAP 
will be sparse, and compression may reduce its size, but the 
number of blocks will remain at the high water mark, creating 
longer search and update times. 

In order to implement the additional features described 
below, Klara implemented an enhanced version of ZAP 
shrinking to be able to reclaim space in the ZAP. 

As a side effect of this work, Klara completed the in-
progress work on ZAP shrinking that will improve the 
performance of formerly large directories and other ZAPs that 
have shrunk. 

C. Dedup Quota 

In order to limit the size of the DDT to ensure it fits in 
memory, or within a vdev of fast devices (NVMe), Klara 
added new functionality to allow the administrator to 
configure the maximum size of the DDT, so that it does not 
exceed the target size. If this maximum is reached, no new 
unique blocks are added to the DDT. Any data that is duplicate 
of existing data is still able to deduplicate. 

When the legacy DDT was able to fit in RAM, or at least 
on fast media, performance could be acceptable for some 
workloads, but the moment the DDT exceeded that size, and 
some writes requires reading data from slow spinning media, 
the performance of the entire system was crippled. Giving the 
administrator the required controls to prevent performance 
dropping off a cliff as the DDT grows makes deduplication 
infinitely more useful. 

Deduplication could also cause serious problems if the size 
of the DDT exceeded available memory during pool import 
and recovery. If a rewind or other operation requires writing 
to the pool, and the DDT was constantly being pages in and 
out due to being too large the system could take excessive 
amounts of time to bring the pool online, sometimes on the 
order of weeks due to the extremely poor performance caused 
by the workload being predominantly random reads. While 



performance is greatly improved by FDT, the quota feature 
helps ensure the system does not exceed its own capacity. 

D. FDT Pruning 

In order to have the dedup quota feature be more useful, 
Klara also implemented FDT pruning. When the DDT is 
nearing its quota, ZFS will remove some of the oldest entries 
from the unique DDT. It is assumed that the oldest entries 
have the least chance of deduplicating, as they have been 
around the longest and have yet to find a match. Removing 
these older entries in favour of newly written data that may 
have a higher chance of deduplicating against yet newer data 
is judged to be more desirable. 

This ensures that the deduplication functionality can 
continue to operate, and that the data most likely to benefit 
from deduplication being resident in the “unique” DDT.  

VI. PERFORMANCE 

 Legacy deduplication suffers from extremely poor 
performance, which gets worse as the size of the DDT 
increases. In the field, we have seen customers with DDTs 
containing 400 million blocks. Even with NVMe based 
storage, these pools perform extremely poorly for writes, due 
to the demand reads required for each write. The customer 
persists using dedup in spite of this, because they are storing 
50 TiB of data (compressed to 37 TiB) using only 7.7 TiB of 
storage space with the savings from deduplication, even 
though 240 million of the 400 million blocks are unique. 

 In the following benchmarks, we write data to a pool with 
8 KiB records (to create a larger number of DDT entries), in 
batches of 64 GiB while measuring write throughout. After 
each batch, we drain the FDT-Log and then measure the total 
amount of data written to the dedicated dedup vdev, to 
measure the inflation factor. Batches are repeated to measure 
the change in throughput and inflation as the size of the DDT 
grows. 

TABLE I.  REDUCED AMPLIFICATION 

Write Amplification 

Configuration 
Total 

Inflation 

Incremental 

Inflation 

Legacy 311% 479% 

FDT copies=3 maxmem=320M 15% 19% 

FDT copies=1 maxmem=320M 8% 10% 

FDT copies=1 maxmem=1.6G 7% 9% 

FDT reduces inflation by 5x – 30x 

 

 

 
 

 The most important improvement from FDT is the 

ability to sustain much higher write throughputs than with 

legacy dedup. As our results show, performance is 

maintained at a level much closer to a system without 

deduplication and does not suffer the same linear decline as 

the size of the DDT grows. 

TABLE II.  INCREASED PERFORMANCE 

Write Performance 

Configuration MiB/s % of Baseline 

Legacy 44 100% 

FDT copies=3 357 811% 

FDT copies=1 362 822% 

FDT copies=1 bs=32k 361 820% 

No Dedup 647 1470% 

FDT increases performance over legacy dedup by 800% 

 

 
 

In these tests, all writes were unique blocks. With some 

portion of writes being obviated by deduplication, real-world 

throughput of FDT would be much closer to the speeds 

observed without deduplication. 
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VII. CONCLUSIONS 

 With the changes we have created, ZFS deduplication 
becomes a viable option for use in production without the 
extreme performance tradeoffs requires in the past. With new 
lower latency storage media, dedicated dedup vdevs, and the 
new suite of options and tunables, dedup becomes generally 
useful for a wide range of workloads. Fast Dedup improves 
performance of a previously pathological workload by over 
800% 
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